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We study analytically the late time statistics of the number of particles in an Eden
growth model on a tree. In this model, a cluster grows in continuous time on a binary
Cayley tree, starting from the root, by absorbing new particles at the empty perimeter
sites at a rate proportional to c−l where c is a positive parameter and l is the distance of
the perimeter site from the root. For c = 1, this model corresponds to random binary
search trees and for c = 2 it corresponds to digital search trees in computer science. By
introducing a backward Fokker-Planck approach, we calculate the mean and the variance
of the number of particles at large times and show that the variance undergoes a ‘phase
transition’ at a critical value c = √

2. While for c >
√

2 the variance is proportional to
the mean and the distribution is normal, for c <

√
2 the variance is anomalously large

and the distribution is non-Gaussian due to the appearance of extreme fluctuations. The
model is generalized to one where growth occurs on a tree with m branches and, in this
more general case, we show that the critical point occurs at c = √

m.
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1. INTRODUCTION

Growing clusters are ubiquitous in nature and they exhibit fascinating structures
and patterns. Examples range from natural fractals, such as snowflakes and soots,
to artificial structures such as networks, for example the Internet and social net-
works. Various growth models have been studied extensively by physicists over
the last three decades (For a review of growth models, see Ref. 1). In these models
growth starts from a single seed site and proceeds via absorbing new particles into
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the cluster according to certain specified rules. Different growth rules give rise
to different growth models, examples being the Eden model, (2) invasion percola-
tion, (3) diffusion limited aggregation(4) and the growing network models (5) which
have recently received much attention. There are two reasons why many of these
growth models are often studied on a Cayley tree (or on the Bethe lattice). (6) First,
the tree structure of the Bethe lattice mimics a Euclidean lattice in the limit of
high dimensions where the mean field theory often becomes exact. Secondly, the
absence of loops on the Cayley tree often allows one to obtain exact analytical
solutions which are very difficult to obtain on a regular d-dimensional lattice.
There is yet another compelling motivation for studying these growth models on
a Cayley tree and this comes from computer science. ‘Storing and Search’ of data
is a very important area of computer science. (7) Incoming data to a computer is
usually stored on a Cayley tree by using various data storage algorithms and the
tree so grown is called a ‘search tree.’ (7) Different algorithms lead to different
search trees and in some cases, as explained below, the rules of growth of a search
tree can be shown to be exactly equivalent to a ‘physical’ growth model on the
tree. Thus the study of these physical growth models on a Cayley tree provides
important insights into data storage in computer science.

As a first example of this equivalence between a physical growth model and
a search tree, we show here that the Eden model on a binary Cayley tree is exactly
equivalent to the random binary search tree (RBST). Consider the Eden model on
a binary Cayley tree where the growth starts from the root. (6) At the first step, a
particle gets absorbed at the root, thus forming a cluster of size 1. This cluster has
now two empty neighbors which defines the perimeter of the cluster. At the next
step, a new particle will get absorbed at any of these two perimeter sites chosen
with equal probability, thus forming a cluster of size 2. The subsequent growth
occurs following the same rule, namely a new particle gets absorbed at any of the
perimeter sites chosen with equal probability. In Fig. 1, we show a cluster after
4 steps where the black sites denote the cluster and the shaded sites denote the
current perimeter sites that are available for subsequent growth. Figure 2 shows
all possible Eden clusters of size 3 and their associated statistical weights.

On the other hand, a binary search tree in computer science is constructed by
the following simple algorithm. (7,8,9) Imagine that we have a data string consisting
of N items which are labeled by the N integers: {1, 2, . . . , N }. These could be
the months of the year or the names of people etc. Let us assume that this data
appears in a particular order, say {6, 4, 5, 8, 9, 1, 2, 10, 3, 7} for N = 10 integers.
This data is first stored on a binary tree following the simple dynamical rule: the
first item 6 is stored at the root of the tree (see Fig. (3)). The next item in the
string is 4. We compare it with 6 at the root and since 4 < 6, we store 4 in the left
daughter node of the root. Had it been bigger than the root item 6, we would have
stored it in the right daughter node. The next item in the string is 5. We again start
from the root, see that 5 < 6, so we go to the left branch. There we encounter 4 and
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Fig. 1. An Eden cluster of size 4 on a Cayley tree. The black sites form the cluster and the shaded
sites form the perimeter. At the next step, growth can occur at any of the 5 shaded perimeter sites with
equal probability 1/5.

we find 5 > 4, so we go the right daughter node of 4. This process is continued till
all the N = 10 items are assigned their nodes and we get a unique binary search
tree (BST) (see Fig. (3)) for this particular data string {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}.
Usually the data arrives at a computer in random order. To study this situation,
one considers the simplest model called the ‘random binary search tree’ (RBST)
model where one assumes that the incoming data string can arrive in any of the
N ! possible orders or sequences, each with equal probability (For a recent review
on search trees for physicists, see Ref. 9). For each of these sequences, one has a
binary tree. For example, in Fig. 4, we show the binary trees for N = 3 along with
their associated probabilities.

Comparing Figs. 2 and 4, one sees immediately that the Eden trees after
3 steps have exactly the same configurations and statistical weights as the random
binary search trees with data size N = 3. This analogy can be easily extended
to all N . The key point is that after (n − 1) steps there are (n − 1) occupied
sites in the Eden cluster and n perimeter sites (this is easy to understand as the
addition of a new occupied site eliminates one old perimeter site while creating
two new perimeter sites). The probability of subsequent growth at step n at any
of these perimeter sites is pn = 1/n. Thus the statistical weight of a cluster of N
sites formed by a specific history of growth is simply w = p1 p2 . . . pN = 1/N !,

w=1/6 w=1/6 w=1/6 w=1/6w=1/3

Fig. 2. All possible Eden clusters of size 3 on a tree and their associated statistical weights w.
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Fig. 3. The binary search tree associated with the data string {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}.

which is the same as in the RBST model. Thus the Eden model on the Cayley tree
is exactly equivalent to the RBST.

Another popular search tree model is known as the ‘digital search tree’ (DST)
which is constructed by the following rule. (7,8,10,11,12,13,14,15) Consider again a
binary Cayley tree each node of which can contain at most one entry. One starts
with an empty tree and the data is stored sequentially. The first data item is stored
in the root of the tree. The next one arrives at the root and finding it occupied,
moves to any of the two empty daughter nodes chosen at random and occupies
that node. Then the next item arrives and again it starts at the node, chooses any
of its two daughters randomly and moves there. If the chosen daughter is empty
it occupies it. If the chosen daughter is already occupied, it again chooses one of
its two descendants at random and moves there. Thus at any stage, a new entry
starts at the root and performs a random walk (to the left or to the right daughter
with equal probability) down the tree till it finds an empty node and occupies the
node. Thus one obtains again a growing tree where at any stage growth can occur
at any of the perimeter sites, but now the growth probability at a perimeter site a is
pa ∝ 2−la where la is the distance of the perimeter site from the root. The DST is
an important tree structure in computer science and has been studied extensively.
In particular, it turns out the DST is a natural tree representation(16,14) of the data
compression algorithm due to Ziv and Lempel. (17) Recently it was shown that
a diffusion limited aggregation model introduced by Bradley and Strenski (18) in
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Fig. 4. All possible random binary search trees for a data of size N = 3 and their associated statistical
weights.
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physics is exactly equivalent the the DST model in computer science and a variety
of exact results were obtained by exploiting this connection. (15)

The examples above illustrate a profound link between growth models and
the dynamics of search tree formation in computer science. Note that the two
search tree models discussed above, the RBST and the DST, can be considered as
special cases of a general growth model where growth occurs (i.e. a new particle
gets absorbed) at any of the available perimeter sites a with a growth probability
pa ∝ c−la where c is a constant positive parameter and la is the distance of the
perimeter site a from the root of the tree. The RBST (equivalently the Eden model)
corresponds to c = 1 so that all perimeter sites have equal probability to absorb
a particle. The DST, on the other hand, corresponds to c = 2 as discussed above.
It is then useful and interesting to study this general growth model parametrized
by c and ask if there are any qualitative changes in the statistical properties of the
growth clusters as one varies the parameter c continuously. Indeed, Aldous and
Shields studied a continuous-time version of this generalized growth model. (16)

Note that in the two models discussed above time is discrete and is equal to the
number of particles in the tree. In the version of the model studied by Aldous and
Shields, time is considered continuous and growth occurs at any of the available
perimeter sites say the site a with a rate proportional to c−la where c is a positive
parameter. In this continuous-time model, the total number of particles in the
tree at time t is thus a random variable, unlike in the discrete time version.
Thus, while the discrete-time model has a constant particle number ensemble, the
continuous-time model has a constant time ensemble, much like the canonical and
the grand canonical ensemble in statistical physics. Asymptotically at long times,
we expect that various observables in the continuous-time model, when expressed
as a function of the average number of particles 〈M(t)〉 (instead of the time t itself)
should have the similar dependence on 〈M(t)〉 as the corresponding N dependence
in the discrete-time model. Henceforth, we will consider in this paper only the
continuous-time version à la Aldous–Shields, since it is, from a technical point of
view, easier to study than its discrete-time counterpart.

The question naturally arises whether the statistical properties of the growing
clusters in this model undergo any qualitative change of behavior as one tunes
the parameter c continuously. Indeed, Aldous and Shields established rigorous
probabilistic bounds to show that the nature of the fluctuations (variance) in the
number of particles in the tree at time t is qualitatively different for c <

√
2 and

c >
√

2. While for c >
√

2 the central limit theorem holds and the total number
of particles has a limiting Gaussian distribution, (16) for c <

√
2 the central limit

theorem breaks down due to the appearance of anomalously large fluctuations.
Thus, there is a sharp phase transition in the nature of the fluctuations at a critical
value c = √

2. However, the mechanism responsible for this phase transition and
even the explicit quantitative behavior of the fluctuations above, below, or at the
critical point were not easy to obtain within the rigorous probabilistic analysis of
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Aldous and Shields. The principal purpose of this paper is to provide a detailed
quantitative understanding of this rather ‘peculiar’ phase transition. Our method,
completely different from the original approach of Aldous and Shields, employs
a backward Fokker–Planck formalism. The advantage of this method is that one
can obtain exact asymptotic results explicitly. Moreover, our analysis also shows
that the mathematical mechanism behind this phase transition is similar to the
phase transitions found recently in the variance of the number of nodes needed
to store data on a m-ary search tree (where m is the number of branches) at
the critical value m = 26(19,20,9,21,22,23,24) and also in the variance of the number
of splitting events in a D-dimensional fragmentation model at the critical value
Dc = π/sin−1(1/

√
8) = 8.69363 . . .. (20,9) The physics literature on fragmentation

is very rich (For a general review of fragmentation, see Ref. 25) with applications
ranging from solid mechanics, (26) aggregates (27) disordered systems, (28) geology
(29) and turbulence. (30) Interestingly the transition found in, (20) in terms of frag-
mentation, was a new form of transition which was discovered because of the
motivation from computer science.

The layout of the paper is as follows. In the next Sec. 2, we define the model
precisely and summarize the main results. We study here a generalized Aldous–
Shields model where the growth takes place on a Cayley tree with m branches.
In Sec. 3, we derive the evolution equations for the mean and variance of the
number of occupied sites as a function of time via a backward Fokker Planck
technique. A simple scaling analysis is then carried out to determine the temporal
growth exponents. In Sec. 4 a more thorough analysis of the evolution equations is
provided that enables us to obtain explicitly not just the growth exponents, but also
exact expressions for various amplitudes and prefactors that include interesting
log-periodic oscillations. We conclude with a summary and a discussion of open
questions in the last section.

2. THE MODEL AND THE RESULTS

We consider a generalized Aldous–Shields model where growth occurs on
a Cayley tree (rooted at O) with m branches (see Fig. 5). Aldous and Shields
studied(16) only the binary case m = 2. Initially the tree is empty and growth
occurs in continuous time starting from the root O . At any instant t , one first
identifies the available perimeter nodes. A node a at time t is a perimeter node
if it is empty at t but its parent node is occupied at t (see Fig. 5). Subsequently,
in a small time interval �t , a perimeter node a either absorbs a particle with
probability c−la �t or remains unoccupied with probability (1 − c−la �t), where
la is the depth of the perimeter node a, i.e. its distance from the root O . This
growth process occurs simultaneously at all the perimeter nodes. Thus, the total
number of particles n(t) in the tree rooted at O is clearly not a fixed number at
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Fig. 5. The growth of the Aldous–Shields model on a tree with m branches and rooted at O . The
filled circles are occupied nodes and the shaded ones are the perimeter nodes where growth can occur
subsequently. For example the site marked a is a typical perimeter site at a distance la = 3 from the
root O of the tree.

a given time t , instead it is a random variable in the sense that the value of n(t)
differs from one history of evolution to another. We are interested in computing
the statistics of n(t) at large times t .

In this model, we have two parameters m and c. It is useful to first summarize
our main results. Using a backward Fokker-Planck approach we derive an exact
evolution equation for the generating function,

G(µ, t) = 〈exp (−µ n(t))〉 =
∞∑

n=0

e−µ n P(n, t) (1)

where the angle brackets denote an average over all histories of the evolution
process and P(n, t) is the probability distribution of n at time t . We show that
G(µ, t) evolves via the equation

dG(µ, t)

dt
= −G(µ, t) + e−µ Gm(µ, t/c), (2)

starting from the initial condition G(µ, 0) = 1. By differentiating G(µ, t) with
respect to µ and putting µ = 0, one can also derive the evolution equations for
all the moments of n(t). The Eq. (2) is nonlinear and nonlocal in time for generic
values of c and m, and is thus difficult to solve exactly, except for the c = 1 case
when it becomes local. However, we were able to compute exactly the asymptotic
large time behaviors of the mean and the variance of n(t) for arbitrary m and c.
Below we present our results for the three different cases c = 1, c < 1 and c > 1
separately.



1358 Dean and Majumdar

The case c = 1: In this case our model is precisely the continuous-time version
of the Eden model. This case c = 1 is exactly solvable since the evolution Eq. (2)
becomes local in time. We solved for G(µ, t) and obtained the following explicit
result for the distribution P(n, t) for all m and t

P(n, t) = �
(
n + 1

m−1

)
�

(
1

m−1

)
�(n + 1)

e−t
[
1 − e−(m−1) t

]n
(3)

where �(x) is the standard Gamma function. The mean number of particles M(t) =
〈n(t)〉 increases exponentially in time for all m > 1,

M(t) = 1

m − 1
[exp ((m − 1)t) − 1] . (4)

For the special case m = 1 (a line with a constant rate of deposition), M(t) = t
and the distribution P(n, t) = e−t t n/n!, obtained from Eq. (3) by taking the limit
m → 1, is purely Poissonian as expected.

The case c < 1: Since the growth rate at a perimeter node a is proportional to
c−la where la is the distance of the node from the root O , it is clear that for
c < 1, farther a perimeter node is from the root, the larger is its probability to get
occupied. Thus the cluster grows in a rather ramified manner where long branches
grow faster than the short branches. In this case we expect that the mean number of
sites grows at least exponentially. But since practically this case is of little interest,
we do not discuss it further in this paper.

The case c > 1: We now come to the practically (at least with respect to computer
science applications and growth models where new particles arrive from the root
and move down the tree) most relevant case c > 1. We show that in this case there
is a sharp phase transition in the asymptotic statistics of n(t) across the critical
line c = √

m in the (m, c) plane with m > 1 and c > 1. We calculated exactly
the asymptotic time dependence of the mean M(t) = 〈n(t)〉 and the variance
V (t) = 〈n2(t)〉 − M2(t), for all values of m > 1 and c > 1. We show that while
the fluctuations are normal (i.e. the variance of n(t) is proportional to its mean)
for c >

√
m, they are anomalously large for c <

√
m. Even though we have two

parameters c and m, it turns out that the asymptotic behaviors can be described in
terms of the single growth parameter

α = ln(m)

ln(c)
(5)

where α > 0 since c > 1. In terms of α, the phase transition takes phase at the
critical value αc = 2. The normal phase for c >

√
m corresponds to α < αc = 2

and the anomalous phase for c <
√

m corresponds to α > αc = 2.
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ααc=20

NORMAL ANOMALOUS

Fig. 6. The phase transition as a function of α = ln(m)/ ln(c) > 0. The critical point at αc = 2 separates
the phase (α < 2) with normal fluctuations from the phase (α > 2) with anomalously large fluctuations.

More precisely, we find that for large t , the mean M(t) grows as a power law
(up to corrections periodic in ln(t)),

M(t) ∼ A tα, (6)

and we provide an explicit expression for the amplitude A. The variance, on
the other hand, has different behaviors for c <

√
m and c >

√
m or equivalently

for α > 2 and α < 2. We show that the variance at large times t , again up to
log-periodic corrections, grows as

V (t) 	 B ′ tα for α < 2 (7)

	 Bc t2 ln(t) for α = αc = 2 (8)

	 B t2α−2 for α > 2. (9)

We also provide exact expressions for the amplitudes B ′, Bc and B. In order to use
these continuous-time results for the discrete-time model where the ‘time’ is same
as the number of particles, it is instructive to eliminate the explicit t dependence in
the results for the variance and instead express it as a function of the mean number
of particles. Eliminating t between Eqs. (6)–(9), we get

V (t) ∼ C ′ M(t) for α < 2 (10)

∼ Cc M(t) ln(M(t)) for α = αc = 2 (11)

∼ C M(t)2−2/α for α > 2. (12)

Explicit expressions for the amplitudes C ′, Cc and C are likewise provided.
We thus see that for α < 2 the fluctuations of n(t) about its mean value,

denoted by �n(t) = √
V (t), are of order M1/2 as is the case for a normal Gaussian

or Poisson distribution. However for α > 2 we find that �n(t) ∼ M1−1/α for large
M . For α > 2, we have that 1 − 1/α > 1/2 and hence the relative fluctuations
about the mean become larger as we cross the threshold α = 2 from below. The
phase α < 2, or equivalently c >

√
m corresponds to a region of slower growth

where the central limit theorem holds and the distribution of n(t) is asymptotically
normal. On the other hand, α > 2 marks a phase where rapid growth tends to
occur along a single branch resulting in anomalously large fluctuations. Thus the
statistics of n(t) in this phase is dominated by extreme fluctuations. The nature
of this phase transition is thus very similar to the ones recently reported in m-ary
search trees (19,20,9,21,22,23,24) and a related fragmentation model. (20,9)
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We end this section with a remark on the usage of the term ‘phase transition.’
The ‘phase transition’ observed in this model refers to the abrupt change of the
variance (and also that of the full distribution) of the number of particles n(t) in
the tree as one changes the parameter α = ln(m)/ ln(c) through its critical value
αc = 2. This may not correspond to the traditional definition of ‘phase transition’
used in equilibrium statistical mechanics, e.g. the divergence of a correlation
length as one approaches a critical point as in second order phase transition. The
‘phase transition’ in the Aldous–Shields model is closer to the change of behavior
one observes in the diffusion of a Lévy walker. A Lévy walker jumps, at each
step, by a random length l drawn from a power law distribution, p(l) ∼ l−(1+γ )

for large l with γ > 1 (required for normalization). It is well known (see for
example, Ref. 31) that the root mean square displacement of the particle after n
steps

√〈R2
n〉 ∼ n1/2 for large n only when γ > 2, i.e. one gets normal diffusion

and the asymptotic position of the walker is distributed normally. On the other
hand, for 1 < γ < 2 one gets anomalously large diffusion,

√〈R2
n〉 ∼ n1/γ for large

n and the asymptotic distribution of the position of the walker is non-Gaussian.
Thus there is a change of behavior at the critical value γc = 2. The change of
behavior in the variance of the number of particles in the Aldous–Shields model
at the critical value αc = 2 is thus similar in nature to the the change of behavior
seen for the Lévy diffusion at γc = 2, rather than the standard ‘phase transition’
observed in critical phenomena.

3. DERIVATION OF THE EVOLUTION EQUATIONS

In this section we will derive the evolution equation for the probability distri-
bution, and in particular the evolution equations for the mean and the variance, of
the total number of occupied sites n(t) at time t in a tree rooted at the site O . The
root O , by definition, has level or depth l0 = 0. The method of derivation is based
on a backward Fokker Planck formalism which involves considering the future
evolution of n(t) conditioned on what happens in the first infinitesimal time inter-
val (0,�t). Since our final aim is to derive a recursion relation for the evolution
process, it is convenient to first derive the evolution equation for the number of
particles na(t) in a subtree rooted, say, at any arbitrary site a. By definition, na(t)
includes the particle at the root a. The number of particles in the full tree is just a
special case when the site a is chosen to be the original root O of the full tree. We
now count the ‘local’ time t (for this subtree) from the instant the site a becomes
a potential growth site, so that, by definition, na(0) = 0. Clearly, at any given t ,
the distribution P(na, t) of na(t) depends only on t and la , the depth of the site a.
This means that one can write

〈F(na(t))〉 =
∞∑

na=0

F(na) P(na, t) = f (t ; la) (13)

where F(x) is any arbitrary function.
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Consider now the site a with its descendants a1, a2, . . . , am , where a is
a potential growth site at t = 0. By definition a is unoccupied at t = 0 and thus
a1, a2, . . . , am are not potential growth sites at t = 0. In the first infinitesimal time
interval (0,�t) there are two possibilities: (i) either no particle fills the potential
growth site a, thus na(t) = na(t − �t). This happens with probability 1 − c−la �t .
(ii) the other possibility is that the potential growth site a is filled by a particle with
probability c−la �t and as a consequence the number of particles in the subtree
rooted at a is increased by one and the daughter nodes a1, a2, . . . , am all become
potential growth sites. Mathematically we can write the above evolution in the
following way: in the time interval (0,�t)

na(t) = na(t − �t)(1 − I ) +
[

1 +
m∑

i=1

nai (t − �t)

]
I (14)

where I is a random variable which takes the value 1 with probability c−la �t and
0 with probability 1 − c−la �t . Taking the expectation of Eq. (14) with respect to I
and the subsequent growth process in the remaining time t − �t we obtain, upon
taking the limit �t → 0,

d

dt
〈na(t)〉 = c−la

[
1 − 〈na(t)〉 +

m∑
i=1

〈nai (t)〉
]

. (15)

We now use the property that the statistics of the number of particles in a
subtree rooted at level a depends only on la as encoded in Eq. (13) to obtain

d

dt
M(t ; la) = c−la [1 − M(t ; la) + m M(t ; la + 1)] . (16)

where we have defined

M(t ; la) = 〈na(t)〉 (17)

and have used the fact that by definition lai = la + 1 if ai is a daughter of the
node a. Note that the root O of the full tree has depth lO = 0. Thus the mean
M(t) = 〈n(t)〉 of the total number of particles in the full tree rooted at O is simply,
M(t) = M(t, 0). Thus to obtain M(t), our strategy is to find the solution M(t, la)
of Eq. (16) for arbitrary la and eventually put la = 0.

The next step is to notice that as one goes down a level in the tree the growth
rate is reduced by a factor of c which amounts to rescaling time by a factor of 1/c.
In the notation of Eq. (13) this means that one may write

f (t ; la + 1) = f

(
t

c
; la

)
. (18)
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Next we put la = 0 in Eq. (16), use the definition M(t ; lO ) = M(t ; 0) = M(t) and
also the scaling property in Eq. (18) to obtain,

d

dt
M(t) = 1 − M(t) + m M

(
t

c

)
. (19)

This equation, supplemented by the boundary condition M(0) = 0, then describes
the evolution of the mean number of occupied sites.

An equation for the variance of n(t) can be derived in a similar fashion. The
starting point is obtained by squaring the stochastic evolution Eq. (14) and then
taking the expectation over I and the evolution in the remaining time t − �t . This
yields

〈
n2

a(t)
〉 = 〈

n2
a(t − �t)

〉
(1 − c−la �t) +

[
1 + 2

〈 m∑
i=1

nai (t − �t)

〉

+
〈( m∑

i=1

nai (t − �t)

)2〉]
c−la �t. (20)

We now use the fact that the subtrees rooted at sites at the same level are statistically
independent and so

〈nai (t)na j (t)〉 = 〈nai (t)〉〈na j (t)〉 for i �= j. (21)

Now defining the variance of the number of sites occupied in the tree rooted at
0 as

V (t) = 〈n2(t)〉 − 〈n(t)〉2 (22)

and using the scaling relation Eq. (18), after some elementary algebra, we obtain

d

dt
V (t) =

(
d

dt
M(t)

)2

− V (t) + mV

(
t

c

)
. (23)

The boundary condition for this equation is clearly V (0) = 0. Note that the Eqs.
(19) and (23) for the evolution of M and V are linear, however the difficulty in
their analysis comes from the fact that for c �= 1 they are non-local.

Another way to obtain the equations for M and V is by deriving directly
an evolution equation for the generating function G(µ, t) of n(t) defined as in
Eq. (1). Following exactly the same backward Fokker–Planck strategy as used
for the mean, it is straightforward to show that G(µ, t) evolves by the nonlinear
nonlocal Eq. (2). The moment equations, Eqs. (19) and (23) can be obtained by
differentiating Eq. (2) with respect to µ the appropriate number of times and
setting µ = 0 at the end.

The evolution Eq. (2) is difficult to solve explicitly for generic values of c and
m since it is a nonlinear (for m �= 1) and nonlocal (for c �= 1) equation. However,
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exact results can be derived in a few cases that we consider below. The asymptotic
solution for the mean and variance for generic m and c will be presented later in
the next section.

3.1. Exact Solution for the Eden Growth c = 1

The case c = 1 corresponds to the Eden model where growth occurs at any
of the available perimeter sites with equal rates. For c = 1, Eq. (2) becomes local
in time t and can be explicitly solved. We find that for all m ≥ 1

G(µ, t) = e−t
[
1 − e−µ

(
1 − e−(m−1)t

)]−1/(m−1)
. (24)

Expanding the r.h.s. of Eq. (24) in powers of e−µ as in Eq. (1), one can then read
off the distribution P(n, t) explicitly as in Eq. (3). The mean number of particles
grows exponentially for all m > 1 as in Eq. (4). Similarly, one can compute the
variance V (t). We find

V (t) = 1

(m − 1)

(
e(m−1)t − 1

) (
2 e(m−1)t − 1

)
. (25)

For a fixed m, if one takes the limit of large t and large n keeping the product
n e−(m−1)t fixed in Eq. (3), one finds an asymptotic distribution

P(n, t) 	 e−t

�
(

1
(m−1)

) n−(m−2)/(m−1) exp
[−n e−(m−1)t

]
. (26)

Thus, to the leading order, the distribution P(n, t) decays exponentially for large
n over a characteristic size n∗ ∼ e(m−1)t that grows exponentially with time t .
Interestingly, the distribution has a sub-leading power law tail (in addition to the
leading exponential tail) n−φ where the exponent φ = (m − 2)/(m − 1) depends
continuously on m.

For the special case m = 1, where we have just a line of sites and the particles
arrive at an empty available site at a constant rate 1, we get from Eq. (4), M(t) = t .
The full distribution, from Eq. (3), becomes a Poisson distribution P(n, t) =
e−t t n/n! as expected.

3.2. Exact Solution for the Digital Search Tree Growth c = m

The case c = m corresponds to the case where particles arrive at a constant
rate at the root O and then each carries out a random walk down the tree until it
finds a free site to occupy. During its downward journey in the tree the particle,
after arriving at any occupied site, chooses one of its m descendants at random.
This is precisely the algorithm for constructing a m-ary digital search tree. (7,10,16)

If the rate at which the particles arrive at the root O is one then the total number
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of particles in the tree at time t , n(t), is clearly a random variable with Poisson
distribution

P(n = k, t) = t k exp(−t)

k!
, (27)

where k = 0, 1, 2, . . . is a positive integer. This yields

M(t) = t ; V (t) = t, (28)

which we see immediately are the solutions to Eqs. (19) and (23). Furthermore we
see that the generating function G(µ, t) for a Poisson distribution is given by

G(t, µ) = exp (−t + t exp(−µ)) . (29)

It is easy to check that indeed this solves Eq. (2) in the case m = c.

3.3. A Self-Consistent Scaling Approach for the Leading Asymptotic

Growth of the Mean and the Variance for c > 1 and m > 1

The late time asymptotic behavior of Eqs. (19) and (23) for c > 1 and m > 1
may be deduced quite simply by making a self-consistent ansatz for the late time
behavior of M and V . First consider Eq. (19). We make the ansatz

M(t) 	 A tα. (30)

Substituting this into Eq. (19) we may neglect the derivative term on the l.h.s. and
assuming that α > 0 (i.e. c > 1), matching the coefficients of tα gives

m

cα
− 1 = 0, (31)

which yields

α = ln(m)

ln(c)
. (32)

For non-trivial tree structures we are always in the situation where m ≥ 2 and for
the above solution to make sense we require that c > 1 to have a positive exponent
α. While this simple minded scaling approach yields the correct power law growth
of M(t) 	 A tα for c > 1, it does not provide us the value of the amplitude A. To
derive an exact expression for A, we need to solve the full nonlocal Eq. (19) at
late times, and this will be carried out in the next section.

Let us make a similar power law ansatz for the late time behavior of V (t)

V (t) 	 B tβ. (33)

Substituting this into Eq. (23) and neglecting the derivative term we obtain

−Btβ + Bm
tβ

cβ
+ A2α2t2α−2 = 0. (34)
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Asymptotically there are two ways to satisfy this equation. First if we assume a
priori that β > 2α − 2 then the first two terms in Eq. (34) must cancel leading to
cβ = m, i.e. β = ln(m)/ ln(c) = α. The a posteriori condition that this solution is
valid is thus α > 2α − 2, which means α < 2. The second possibility is that all
three terms contribute and thus β = 2α − 2. In this case we find that

B = A2α2

1 − m
c2α−2

= A2α2

1 − c2−α
, (35)

and in obtaining the last equality in Eq. (35) we have used m = cα . However
for this solution to make sense we must have that B > 0 because V (t) is clearly
positive, consequently Eq. (35) can only hold when α > 2 (since c > 1).

This simple minded scaling approach thus indicates that there is a phase
transition in the late time behavior of the variance V (t) at the critical parameter
value αc = 2. For α < 2, we have V (t) ∼ B ′ tα where the amplitude B ′ can not
be determined by the scaling approach. On the other hand, for α > 2 the scaling
approach indicates V (t) ∼ B t2α−2 and moreover it provides a relationship between
the amplitudes B and A (of the mean) via Eq. (35). The critical point αc = 2 thus
separates the region of normal growth α < 2 (or equivalently c >

√
m), where

V (t) ∼ M(t), from the the region α > 2 (i.e. c <
√

m) where the variance grows
anomalously faster V (t) ∼ [M(t)]2−2/α . In the next section, we will see that the
analysis of the full nonlocal Eqs. (19) and (23) indeed corroborates theses scaling
results, and in addition produces exact expressions for all the amplitudes.

Before proceeding to the full analysis of Eqs. (19) and (23) in the next
section for generic c > 1 and m, it is instructive to note that analytic progress is
also possible for Eq. (19) in the case where α = ln(m)/ ln(c) is a positive integer.
This includes, in particular, the critical point α = 2. We make the following ansatz

M(t) =
∞∑

k=1

bntn, (36)

where the term k = 0 in the above sum is omitted in order to respect the initial
condition M(0) = 0. Matching powers of t on substituting this ansatz into Eq. (19)
yields

b1 = 1

bk+1 = bk
1

k + 1

( m

ck
− 1

)
for k > 1. (37)

We thus see that if there exists a positive integer k∗ such that α = ln(m)/ ln(c) = k∗

then bk = 0 for all k > k∗ = α and we have found the solution to Eq. (19) in these
cases. At late times the leading order behavior is thus dominated by the term
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containing tα and we get

M(t) ∼ tα

α!

( m

cα−1
− 1

) ( m

cα−2
− 1

)
· · ·

(m

c
− 1

)

= tα

α!
(cα−1 − 1)(cα−2 − 1) · · · (c − 1) . (38)

In particular, at the critical point α = 2, we get for large t

M(t) 	 (c − 1)

2
t2 (39)

Thus, at this special point α = 2, we have even managed to compute the amplitude
A = (c − 1)/2 of the mean M(t) ∼ A t2 exactly. In the case α > 2, the behavior
of the variance V (t) now follows immediately from Eq. (35). Finally, exactly at
the critical point α = 2, we may asymptotically solve Eq. (23) with the ansatz
V = Bc t2u(t)3 where u is a slowly varying function of t , this gives

4A2

Bc
= u(t) − u

(
t

c

)
(40)

which has the solution u(t) = ln(t) and Bc is thus given by

Bc = (c − 1)2

ln(c)
, (41)

where in the last line of Eq. (41) we have used A = (c − 1)/2.

4. GENERAL SOLUTION OF THE EVOLUTION EQUATIONS
OF THE MEAN AND THE VARIANCE

The full solutions to the nonlocal and nonlinear differential equations of the
type in Eqs. (19) and (23) are rather difficult to obtain completely. Here we obtain
the exact asymptotic solutions following an approach similar to the one used by
Flajolet and Richmond(13) in solving a class of difference-differential equations
arising in the context of digital search trees.

4.1. Solution for the Mean M(t)

We start by the analysis of Eq. (19) assuming c > 1 and m > 1. Taking the
Laplace transform of Eq. (19) we obtain

s M̃(s) = 1

s
− M̃(s) + mcM̃(cs), (42)

3 The authors would like to thank a referee for an improvement on their original argument.
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where

M̃(s) =
∫ ∞

0
dt exp(−st)M(t) (43)

and we have used the initial condition M(0) = 0. The above may be written as

M̃(s) = 1

s(s + 1)
+ mc

(s + 1)
M̃(cs). (44)

Now as M̃(s) should go to zero as s → ∞ and we are considering the case c > 1,
we solve Eq. (44) by iteration finding

M̃(s) = 1

s

∞∑
j=0

m j

(1 + s)(1 + cs) . . . (1 + c j s)
. (45)

Note that taking the limit s → 0 is not straightforward in Eq. (45). This is because
if we set s = 0 in the sum on the r.h.s of Eq. (45), the sum diverges since m > 1.
Following(13) we introduce the function

Q(u) =
∞∏

l=0

(
1 + u

cl

)
. (46)

Thus Q(s/c) = (1 + s/c)(1 + s/c2)(1 + s/c3) . . .. On the other hand,

Q(c j s) =
∞∏
j=0

(1 + c j−l s)

= (1 + c j s)(1 + c j−1s) . . . (1 + cs)(1 + s)(1 + s/c)(1 + s/c2) . . .

= (1 + s)(1 + cs)(1 + c2s) . . . (1 + c j s)Q(s/c). (47)

Thus, one can rewrite the product (1 + s)(1 + cs) . . . (1 + c j s) = Q(c j s)/Q(s/c).
Using this in Eq. (45) we get

M̃(s) = Q(s/c)

s
H (s), (48)

where

H (s) =
∞∑
j=0

m j

Q(c j s)
. (49)

The next step is to take the Mellin transform of H (s) defined as

H∗(x) =
∫ ∞

0
ds sx−1 H (s). (50)
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Substituting H (s) from Eq. (49) in the definition in Eq. (50) we get

H∗(x) =
∞∑
j=0

m j
∫ ∞

0

sx−1

Q(c j s)
ds

=
∞∑
j=0

(mc−x ) j

∫ ∞

0

σ x−1

Q(σ )
dσ

= h∗(x)

1 − mc−x
, (51)

where

h∗(x) =
∫ ∞

0
dσ

σ x−1

Q(σ )
(52)

and in evaluating the sum over j we have assumed Re(mc−x < 1) or equivalently
Re(x) > ln(m)/ ln(c) = α. We also notice that h∗(x) has no poles for Re(x) >

0, and that the poles of 1/(1 − mc−x ) are at xk = α + 2π ik/ ln(c) where k =
0,±1,±2, . . . runs over all integers. All the poles of H∗(x) are thus to the left of
the line Re(x) = α.

The inversion formula for the Mellin transform is given by

H (s) = 1

2π i

∫ i∞+d

−i∞+d
dx H∗(x)s−x , (53)

where the above limits denote an integration up the imaginary axis to the right of
all the poles of H∗, therefore we chose limits with d > α. The contour may be
closed in the left half plane (we assume that the integrand vanishes in the region
Re(x) → −∞) and we can thus evaluate the inverse Mellin transform in terms of
the residues of the poles to the left of Re(x) ≤ α, i.e

H (s) =
∑
poles

Res

[
h∗(x)s−x

1 − exp (ln(m) − x ln(c))

]
(54)

where Res denotes the residue at the pole in question.
The large time behavior of M(t) is determined by the small s behavior

of M̃(s). Now at small s the dominant behavior clearly comes from the poles
xk = α + 2π ik/ ln(c) running up the imaginary axis, any pole coming to the left
of this line of poles will be higher order in s. We evaluate the residues in Eq. (54),
substitute the resulting H (s) in Eq. (48) and then take the limit s → 0 to obtain
the following asymptotic result

M̃(s) ∼ 1

sα+1 ln(c)


h∗(α) +

∑
k �=0

h∗(α + 2π ik/ ln(c))s
2π ik
ln(c)


 , (55)
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where we have used the fact Q(0) = 1. Note that from Eqs. (52) and (46), we have

h∗(α) =
∫ ∞

0

σα−1 dσ

(1 + σ )(1 + σ/c)(1 + σ/c2) . . .
= π

sin(πα)

∞∏
k=1

1 − cα−k

1 − c−k
, (56)

where the last equality follows from an identity due to Ramanujan. (32) Note that
this identity explicitly shows that the function h∗(x) has simple poles at the negative
integers and zero but no poles for Re(x) > 0 as was stated before.

To extract the leading asymptotic behavior of M(t) for large t , let us first
divide the Laplace transform M̃(s) into two parts, M̃(s) = M̃p(s) + M̃l(s) where
M̃p(s) denote the first term on the r.h.s. of Eq. (55) and M̃l(s) corresponds to the
remaining sum over k �= 0. Subsequently the inverse Laplace transform M(t) =
Mp(t) + Ml(t) can also be divided into two parts. The term M̃p(s) has a pure
algebraic form, thus its inverse Mp(t) has a pure power law growth,

Mp(t) ∼ A tα, (57)

where the constant A can be evaluated as follows. If Mp(t) has the form in Eq. (57),
its Laplace transform is M̃p(s) = A �(1 + α) s−(1+α). Comparing this with the first
term in Eq. (55) gives

A = h∗(α)

ln(c)�(1 + α)
= π

ln(m)�(α) sin(πα)

∞∏
k=1

1 − cα−k

1 − c−k
, (58)

where we have used �(1 + α) = α�(α), the definition α = ln(m)/ ln(c) and the
explicit form of h∗(α) from Eq. (56). Here we note that when α is an integer, it
can be verified that Eq. (58) agrees with Eq. (38) derived for discrete values of α

in the previous section.
The second contribution to M̃(s), M̃l (s) is given by a Fourier series in ln(s).

The inverse Laplace transform of this term is difficult to obtain fully but it is easy
to see that it gives rise to a late time behavior of the form

Ml(t) ∼ A tαg (ln(t)) (59)

where g(x) is a periodic function of x . The final asymptotic result for large t is
thus

M(t) = Mp(t) + Ml(t) 	 A tα [1 + g (ln(t))] . (60)

This exact result thus not only confirms the dominant power-law scaling predicted
in Sec. (3) up to log-periodic oscillations, but also provides an explicit formula for
the amplitude A as in Eq. (58). For example, let us consider the binary case m = 2.
For the case, when c = 1, the formula in Eq. (58) gives A = 1, thus M(t) 	 t
for large t . On the other hand, for m = 2, when c = √

2 (the critical point),
one can show from Eq. (58) that A = (

√
2 − 1)/2 and M(t) 	 (

√
2 − 1)t2/2 for

large t .
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4.2. Solution for the Variance V (t)

We now examine the asymptotic behavior of the variance V (t) for large t
using a similar formalism. The evolution Eq. (23) for the variance V (t) is similar
to that for the mean M(t) in Eq. (19) except that the source term in Eq. (23) is
(d M/dt)2, different from the source term 1 in Eq. (19). Solution of Eq. (23) thus
requires an explicit knowledge of how M(t) behaves with time. Taking the Laplace
transform, Ṽ (s) = ∫ ∞

0 V (t)e−st dt in Eq. (23) and using V (0) = 0 we obtain

sṼ (s) = S(s) − Ṽ (s) + mcṼ (cs), (61)

where

S(s) =
∫ ∞

0
dt exp(−st)

(
d M

dt

)2

. (62)

Rearranging Eq. (61) gives

Ṽ (s) = S(s)

1 + s
+ mc

1 + s
Ṽ (cs) (63)

which can be iterated to yield

Ṽ (s) =
∞∑
j=0

(mc) j

(1 + s)(1 + cs) . . . (1 + c j s)
S(c j s). (64)

Using m = cα and the function Q(u) defined in Eq. (46) we can rewrite Eq. (64)
as

Ṽ (s) = Q(s/c)H1(s) (65)

where

H1(s) =
∞∑
j=0

(c1+α) j S(c j s)

Q(c j s)
. (66)

The next step is to take the Mellin transform H∗
1 (x) = ∫ ∞

0 H1(s)sx−1ds of
Eq. (66) which gives, after a change of variable c j s → s in the integration

H∗
1 (x) =

∞∑
j=0

(c1+α−x ) j

∫ ∞

0

S(s)

Q(s)
sx−1ds. (67)

Let us first assume that the integral

h∗
1(x) =

∫ ∞

0

S(s)

Q(s)
sx−1ds (68)



Phase Transition in a Generalized Eden Growth Model on a Tree 1371

exists (the conditions for which will be stated later). Then, for Re(x) > 1 + α, the
geometric sum in Eq. (67) converges (since c > 1) and we get

H∗
1 (x) = h∗

1(x)

1 − c1+α−x
. (69)

Inverting this Mellin transform we get

H1(s) = 1

2π i

∫ i∞+d

−i∞+d

h∗
1(x)

1 − c1+α−x
s−x dx =

∑
poles

Res

[
h∗

1(x)

1 − c1+α−x
s−x

]
, (70)

where the poles are at xk = 1 + α − 2π ik/ln(c) with k = 0,±1,±2, . . .. In Eq.
(70) the integration is along the imaginary axis to the right of all the poles and
then we close the contour over the left half plane. Evaluating the residues and
substituting the results in Eq. (65) we get

Ṽ (s) = Q(s/c)

s1+α ln(c)


h∗

1(1 + α) +
∑
k �=0

h∗
1 (1 + α − 2π ik/ ln(c))


 , (71)

where h∗
1(x) is given by Eq. (68) assuming that it exists.

We now need to invert the Laplace transform in Eq. (71) to evaluate V (t). For
large t , as usual, the dominant contribution will come from the small s behavior
of Ṽ (s). Using Q(0) = 1 and assuming h∗

1(1 + α − 2π ik/ ln(c)) exists for all
k = 0,±1,±2 . . ., it is clear from the small s behavior of Ṽ (s) in Eq. (71) that for
large t

V (t) 	 B ′ tα[1 + G(ln(t))], (72)

where G(x) is a periodic function in x and the amplitude B ′ can be read off as

B ′ = h∗
1(1 + α)

�(1 + α) ln(c)
; where h∗

1(1 + α) =
∫ ∞

0

S(s)

Q(s)
sαds. (73)

Having obtained the results in Eqs. (72) and (73), we need to investigate when
they are valid. These results are valid as long as the integral h∗

1(1 + α) in Eq. (73)
exists. The existence of this integral depends on the small s behavior of the source
function S(s) defined in Eq. (62). Using the asymptotic behavior of M(t) from
Eq. (60) we find that for large t(

d M

dt

)2

	 A2α2t2α−2 [1 + g1(ln(t)] , (74)

where g1(x) is a periodic function in x . Substituting this large t behavior of
(d M/dt)2 in Eq. (62), it follows that, in the case α < 1/2, the integral converges to
a nonzero constant as s → 0. On the other hand, for α > 1/2, the integral diverges
as S(s) 	 A2α2�(2α − 1)s−(2α−1) as s → 0. Up to the log-periodic oscillations,
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the leading behavior of S(s) for small s can be summarized as follows

S(s) 	 C0s−(2α−1) for α > 1/2 (75)

	 − ln(s) for α = 1/2 (76)

	 A1 for α < 1/2 (77)

where

C0 = A2α2�(2α − 1) (78)

is a positive constant for α > 1/2. Also, A1 = ∫ ∞
0 (d M/dt)2dt is a constant that

depends on the full form of M(t) and not just on its asymptotic behavior since for
α < 1/2 the integral is convergent. Substituting this small s behavior of S(s) into
the integral giving h∗

1(1 + α) in Eq. (73) and using Q(0) = 1, it is clear that the
integral exists (no divergence from the small s limit) only for α < 2. For α > 2,
the integral does not exist since the integrand for small s scales as s1−α . Thus the
results in Eqs. (72) and (73) hold only for α < 2.

For α > 2, the above analysis breaks down and we need to employ a different
method. We now go back to our starting Eqs. (65) and (66). It turns out that for
α > 2, we can actually extract the leading small s behavior directly from these
two equations. We directly substitute in Eq. (66) the leading small s behavior of
S(s) 	 C0s−(2α−1) from Eq. (75) where C0 = A2α2�(2α − 1). Additionally we
use Q(0) = 1. Equations (65) and (66) then yield in the s → 0 limit

Ṽ (s) 	 C0

s2α−1

∞∑
j=0

(c2−α) j = C0

s2α−1(1 − c2−α)
(79)

where we have used α > 2 which ensures that the sum in Eq. (79) is convergent.
Inverting the Laplace transform, we then get the large t behavior of V (t) for α > 2

V (t) 	 B t2α−2; where B = α2 A2

1 − c2−α
, (80)

where the constant A is given in Eq. (58). Note that this result in Eq. (80) for α > 2
is in perfect agreement with the self-consistent scaling approach used in Sec. 3.

At the critical point α = 2, the analysis is more delicate. However, from the
scaling approach of Sec. 3, we already know that for large t , V (t) 	 Bc t2 ln(t)
with Bc = (c − 1)2/ ln(c) as in Eq. (41). Thus, the asymptotic behavior of the
variance V (t) can be summarized as

V (t) 	 B ′ tα for α < 2 (81)

	 Bc t2 ln(t) for α = αc = 2 (82)

	 B t2α−2 for α > 2, (83)
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where the three amplitudes are given by

B ′ = 1

�(1 + α) ln(c)

∫ ∞

0

S(s)

Q(s)
sαds

Bc = (c − 1)2/ln(c)

B = α2 A2

1 − c2−α
(84)

where A is given in Eq. (58). Note that computing the amplitude B ′ explicitly
requires an integration over the full source function S(s) which is not so easy.
Eliminating the time t between M(t) 	 A tα and V (t) in Eq. (83), one can express
the variance V as a function of the mean M for large M as in Eqs. (10)–(12) and
one can read off the constants C ′, Cc and C in terms of B ′, Bc and B and the
amplitude A of the mean given in Eq. (58).

Let us end this section with a remark on the mathematical mechanism re-
sponsible for the phase transition in the variance of the number of particles in
this Aldous–Shields model. We note that the exact evolution Eqs. (19) and (23)
respectively for the mean and the variance are very similar—they are both linear
and nonlocal in time, the only difference is in the source term. For the mean M(t)
in Eq. (19), the source term is a constant 1 (the first term on the r.h.s of Eq.
(19)). On the other hand, for the variance, the source term (d M/dt)2 in Eq. (23)
depends on the evolution of the mean. Thus, the mean feeds into the variance
equation as an external source term leading to a competition between the growth
induced by this external source term and the growth induced internally by the
remaining two terms on the r.h.s of Eq. (23). This competition between the ex-
ternal and the internal source is finally responsible for the phase transition in the
asymptotic growth of V (t). For α < 2, the internal source term wins out and the
variance grows similarly as the mean, V (t) ∼ M(t) ∼ tα , leading to the normal
phase. On the other hand, for α > 2, the external source term wins out leading
to a faster growth V (t) ∼ t2α−2 ∼ [M(t)]2−2/α characterizing anomalously large
fluctuations. We note that a similar mechanism namely a “competition between
the internal source and the external driving” was shown to be responsible for
phase transitions in fluctuations in a class of fragmentation problems studied re-
cently. (20,9) In these fragmentation problems, it was shown that the mean and the
variance evolved via similar looking equations, (20? ) except that they differed in
their respective source terms—the variance equation had a source term driven by
the mean, in much the same way as in the Aldous–Shields model discussed here.
Thus, it seems that this phase transition in fluctuations is quite generic as it occurs
in a large class of problems and the mathematical mechanism responsible for it is
as identified above.
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5. SUMMARY AND CONCLUSION

In this paper we have studied analytically a growing tree model introduced by
Aldous and Shields. In this model, growth occurs in continuous time. One starts at
t = 0 with an empty Cayley tree with m branches rooted at 0 and the tree grows,
starting from the root site, by absorbing particles in continuous time. Each site
can occupy at most one particle. At a given instant t , growth can occur only at the
perimeter sites with a rate c−l where c is positive parameter and l is the distance of
the perimeter site from the root of the tree. For c = 1 this model is isomorphic to a
continuous-time Eden model on a tree and also corresponds to the random binary
search tree problem in computer science. For c = 2 this model corresponds to the
digital search tree problem in computer science.

We have introduced a backward Fokker–Planck approach that enabled us to
study analytically the statistics of the total number of particles n(t) in the tree at
large time t . We have shown that at large t , while the mean number of particles
grows as a power law in time, M(t) 	 A tα with α = ln(m)/ ln(c) for all c > 1,
the variance V (t) of the number of particles has two different behaviors depending
on the value of the parameter α. While for α < 2 V (t) ∼ M(t) for large t , for
α > 2 the variance grows anomalously quickly: V (t) ∼ [M(t)]2−2/α . We have
identified the mathematical mechanism behind this phase transition at the critical
value αc = 2 and shown that it is qualitatively similar to the phase transitions
recently encountered in a search tree problem and also in a related fragmentation
problem. Essentially, for α < 2, the typical value of n(t) grows in the same way as
the average and the distribution is asymptotically normal whereas for α > 2, the
typical value does not grow the same way as the average and the distribution is
characterized by large fluctuations caused by the faster growth of a single branch
of the tree.

We obtained detailed analytical results for the first two moments of the
number of particles for generic values of the parameter α. However, we were
able to calculate the full asymptotic distribution of the number of particles only
for two specific values of α, namely for α = 1 (c = m) and α → ∞ (c = 1).
Fortunately these two representative values, where an exact solution is possible,
fall respectively on either side of the critical point αc = 2. Our exact solution
shows that for α = 1 (< αc = 2) the distribution P(n, t) is Poisson and hence is
asymptotically normal for large n. On the other hand for α → ∞, the asymptotic
distribution is certainly non-Gaussian, P(n, t) ∼ n−φ exp[−ne−(m−1)t ] where the
exponent φ = (m − 2)/(m − 1) depends on m. The calculation of the distribution
for other values of α remains a challenging problem.

While we have studied this growth model on a tree because of its connections
to the search tree problems as mentioned in the introduction, it is of general
interest to study this growth problem on a regular Euclidean lattice, e.g. on a
hyper-cubic lattice in d dimensions. In this lattice model, the cluster will grow
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similarly from a seed site at the origin. At a given instant, growth can occur at
any of the available surface sites with a rate c−r where r is the Euclidean distance
of the surface site from the origin. One can then investigate the statistics of the
total number of particles in the cluster after time t . It is easy to make a scaling
argument for the growth of the mean number of particles M(t). Assuming that the
cluster is compact with a typical radius R(t) at time t , we have M(t) ∼ [R(t)]d .
Also, the mean number of surface sites Np(t) ∼ [R(t)]d−1. By the growth rule,
d M/dt ∼ Np(t)c−R(t) for large t . This predicts R(t) ∼ ln(t) for large t and hence
the mean number of particles grows very slowly as M(t) ∼ [ln(t)]d for large t .
An interesting open question for future studies is whether, in finite dimensional
lattice models, the variance exhibits a phase transition, similar to that seen on the
tree, for some critical value of the parameter c?
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